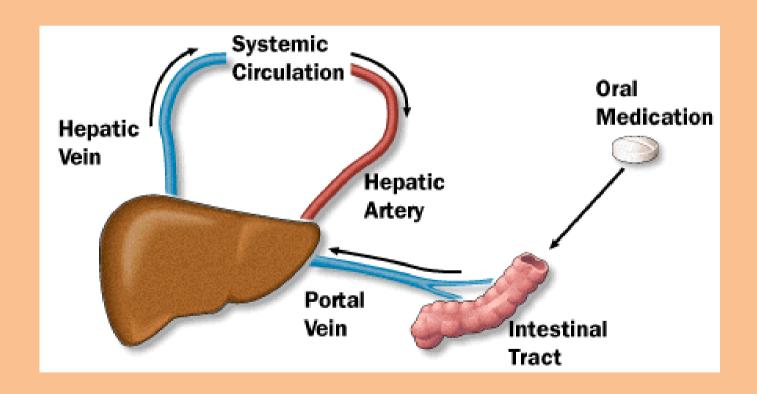
Manual de rotación del residente por la Unidad de Farmacocinética Clínica



Biodisponibilidad

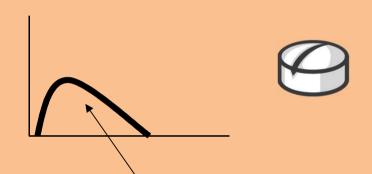
Actividad 1 – Teoría farmacocinética

Absorción intestinal de los fármacos

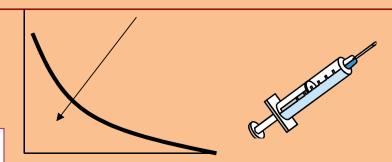
Biodisponibilidad

 Fracción de dosis administrada que alcanza la circulación sistémica

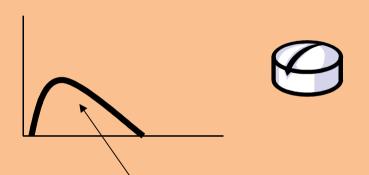
Cantidad absorbida= Dosis · F


Ejemplo de cantidad absorbida

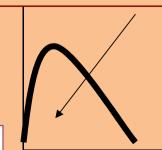
La biodisponibilidad (F) de la digoxina es 0,7.
 Si los comprimidos son de 250 mcg, calcula la cantidad absorbida


Cantidad absorbida = $F \cdot Dosis = 0.7 \cdot 250 \text{ mcg} = 175 \text{ mcg}$

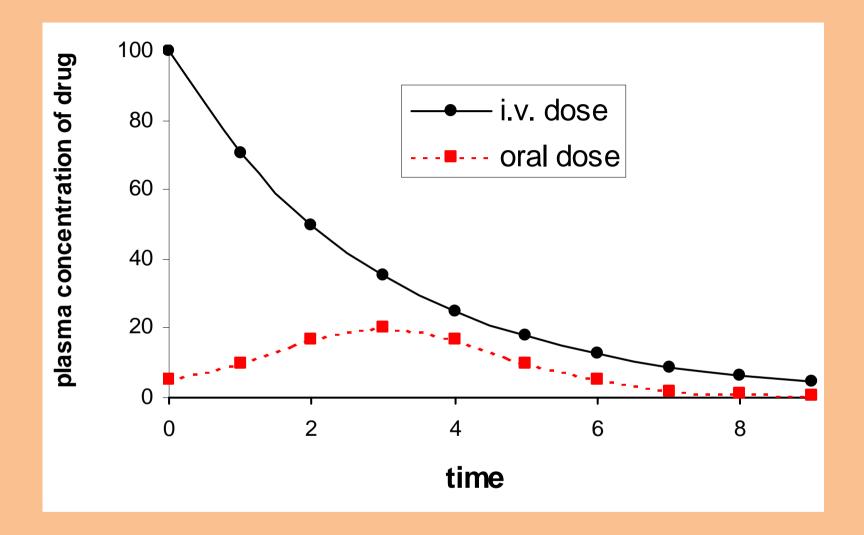
Biodisponibilidad absoluta



$$F = \frac{\text{AUC}_{\text{administracion EV}}}{\text{AUC}_{\text{administracion IV}}} \cdot \frac{\text{Dosis}_{\text{administracion IV}}}{\text{Dosis}_{\text{administracion EV}}}$$



Biodisponibilidad relativa



$$F = \frac{AUC_{problema}}{AUC_{referencia}} \cdot \frac{Dosis_{referencia}}{Dosis_{problema}}$$

Biodisponibilidad = AUC oral/AUC i.v.

Problema

• La BD de un nuevo fármaco se estudió en 8 voluntarios. Cada voluntario recibió una sola dosis de un comprimido de 200 mg del fármaco o 5 ml de una solución acuosa que contenía 200 mg, o bien una inyección de 50 mg en bolo. Se obtuvieron muestras periódicas hasta 48 horas después de la dosis y se determinó su concentración. El AUC medio (0 a 48 h) se da en la tabla siguiente. Calcular la BD relativa del fármaco del comprimido comparado con la solución oral. Calcular la BD absoluta del fármaco contenido en el comprimido.

Solución

Forma farmacéutica	Dosis (mg)	AUC(mcg *h/ml)
Comprimido oral	200	89.5
Solución oral	200	86.1
Invección bolo	50	37.8

BD relativa =
$$\frac{89,5}{86,1}$$
 = 1,04

BD absoluta =
$$\frac{89,5/200}{37,8/50}$$
 = 0,59

Biodisponibilidad y formas farmacéuticas

DIGOXINA

- CAPSULAS (100 %) \rightarrow F = 1
- ELIXIR (77%) \rightarrow F= 0,77
- COMPRIMIDOS (70%) \rightarrow F= 0,70
- AMPOLLAS
 - VIA IV (100%) → F=1

Dosis nueva FF = Cantidad absorbida con la actual FF
"F" nueva FF

Biodisponibilidad y cambio de vía iv a oral

 Calcula la dosis oral equivalente a 1 amp de digoxina.

Intravenosa Oral

Dosis nueva
$$FF = \frac{Cantidad \ absorbida \ con \ la \ actual \ FF}{"F" \ nueva \ FF}$$

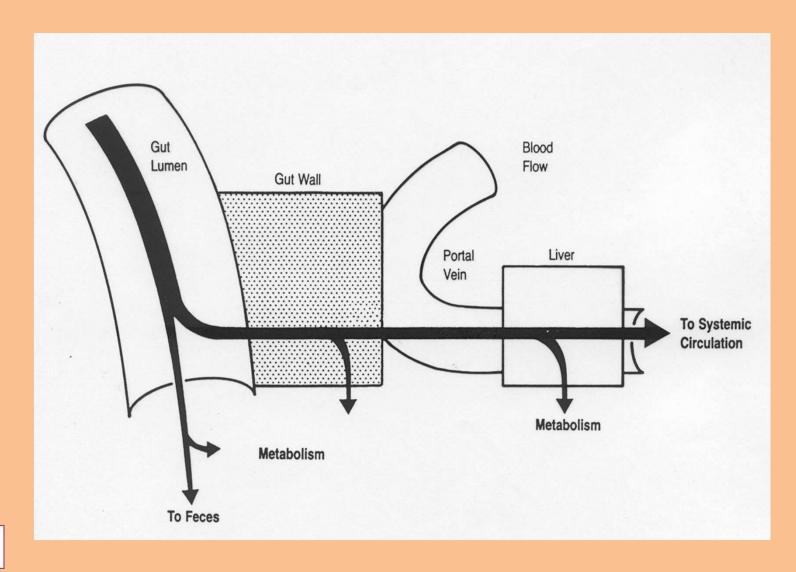
Dosis comprimido =
$$\frac{250 \text{ mcg}}{0,70} \approx 350 \text{ mcg}$$

Biodisponibilidad y cambio de vía oral a iv

 Calcula la dosis iv equivalente de 1 comprimido de digoxina.

Oral ______IV

Dosis nueva FF = Cantidad absorbida con la actual FF
"F" nueva FF

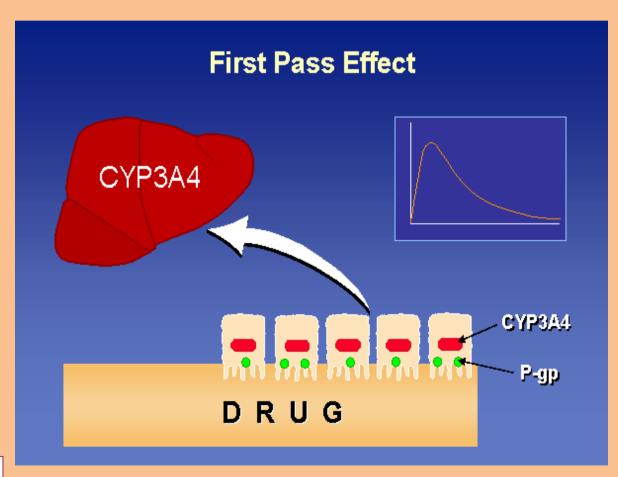

Dosis iv =
$$\frac{0,250 \cdot 0,7}{1}$$
 = 0,175 mg

Biodisponibilidad del verapamilo

- Se absorbe de forma rápida el 90% desde el TGI después de su administración oral.
- Solo un 20-35% de la dosis oral alcanza la circulación sistémica.

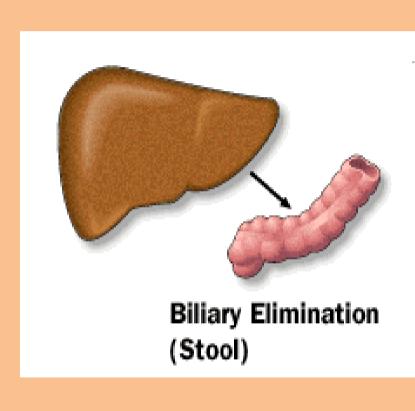
Efecto de primer paso

Pérdidas preabsorción


- Estómago
- Hidrólisis ácida
- Fármacos
 - Penicilina G
 - Eritromicina

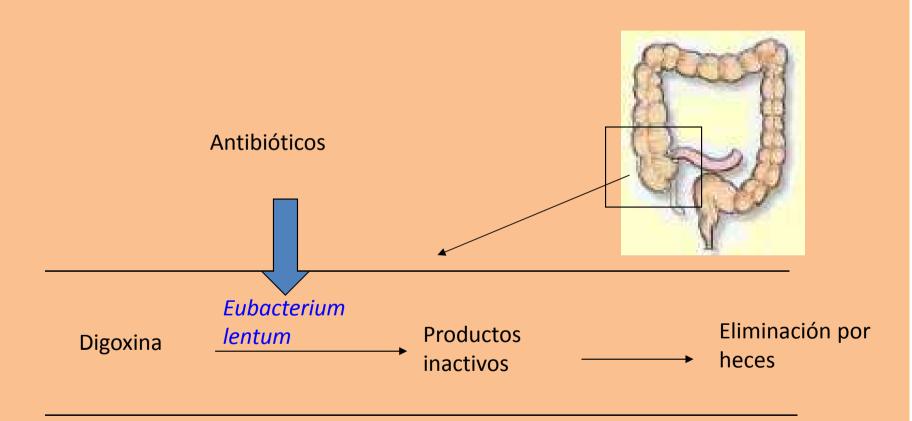
- Intestino delgado
- Hidrólisis enzimática
- Fármacos
 - AAS
 - Cloramfenicol
 - Pivampicilina

- Intestino grueso
- Acción microflora intestinal
- Fármacos
 - Glucurónidos
 - Sulfasalazina



Pérdidas durante absorción

Pérdidas por excreción biliar


- Diazepam
- Indometacina
- Espironolactona
- Digoxina
- Doxiciclina
- Doxorrubicina
- Vincristina

Pérdidas presistémicas

Pérdida directa por heces del medicamento inalterado		Fracción no absorbida
Descomposición no metabólica en el TGI		
Metabolismo intestinal	En fluidos intestinales	
local	Acción microflora	
	En el epitelio intestinal	Fracción absorbida
Metabolismo hepático en el primer ciclo de circulación		

Acción microflora intestinal sobre el metabolismo de DGX

Efecto de los antibióticos sobre la concentración DGX

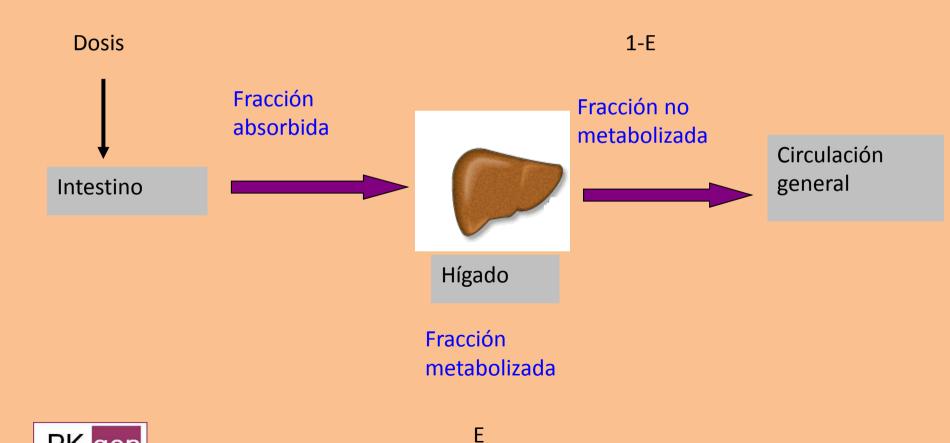
	Concentración sérica de DGX (ng/ml)		
Sujeto	Período control	Período antibiótico	
1	0,72	1,03	
2	0,76	1,33	
3	0,37	0,80	

Concentraciones séricas de digoxina en pacientes que reciben macrólidos

26 Pacientes con NSD en tto con DGX - Macrólido

Pacientes con NSD 0.8-2 ng/ml = 18

Pacientes con NSD >2 ng/ml = 8



4 casos de NSD altos atribuibles a otros factores

4 casos de NSD altos atribuibles al tratamiento con Macrólidos

Coeficiente de extracción hepático (E)

Cálculo de F

F = Fraccion absorbida · fraccion no metabolizada

 $F = Fraccion absorbida \cdot (1 - E)$

Ejemplo

 Se administran 100 mg p.o de un fármaco cuya fracción absorbida es 0,8 y su fracción metabolizada por efecto de primer paso es 0,2.
 Calcula la cantidad absorbida

 $F = Fraccion absorbida \cdot (1 - E)$

$$F = 0.8 \cdot (1 - 0.2) = 0.8 \cdot 0.8 = 0.64 = 64\%$$

Cantidad absorbida = $F \cdot Dosis$

Cantidad absorbida = $0.64 \cdot 100 \text{ mg} = 64 \text{ mg}$