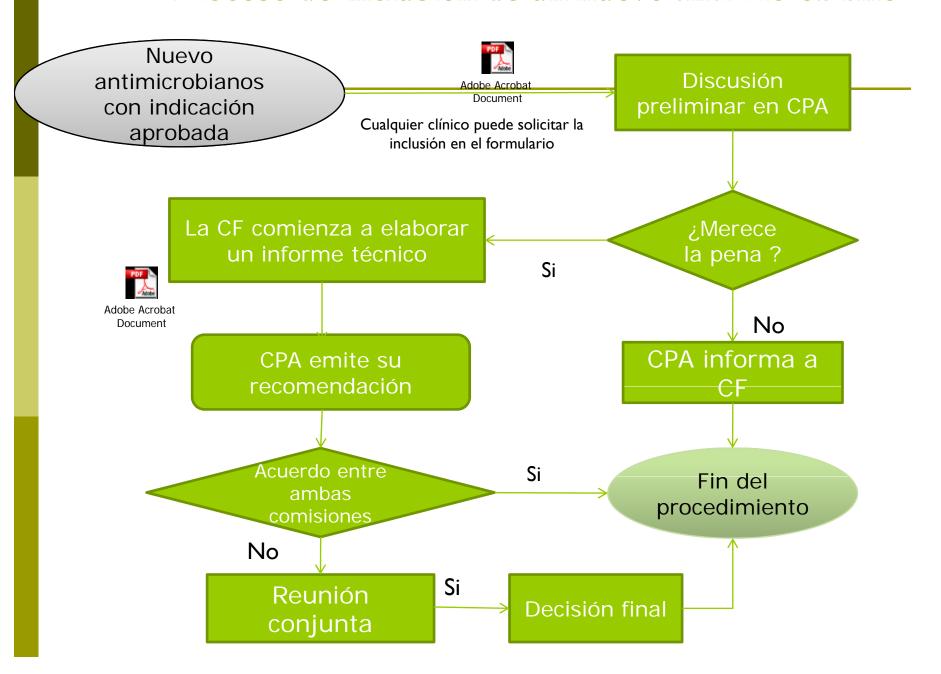
ANÁLISIS DE CARBAPENEMAS

AF inf

Jornada Científica
Ilustre Colegio Oficial de Médicos de Madrid
(Mayo, 2011)

Javier Cobo Servicio de Enfermedades Infecciosas Hospital Ramon y Cajal. Madrid


Particularidades de la valoración de antibióticos en el formulario

- Limitaciones de los ensayos clínicos
 - Diseños de no inferioridad
 - Sesgos de selección
 - No representación de infecciones producidas por especies resistentes
- Consideraciones de "política de antibióticos"
 - Mecanismos de resistencia
 - Selección de resistencias
 - Impacto "ecológico", diversificación...

Decisión sobre la inclusión de nuevos antimicrobianos

	Composición	Papel	Vision
Comisión de Política de Antibióticos	Clínicos (infectólogos, pediatras, cirujanos, intensivistas) con interés especial en antimicrobianos, microbiólogos, farmacéuticos	Asesor	Necesidades reales de los pacientes y de los clínicos Focalizados en las diferencias
Comisión de Farmacia	Farmacéuticos. Clínicos no necesariamente dedicados a E.Infecciosas	Ejecutivo	Ensayos clínicos, seguridad y costes Focalizados en las similitudes

Proceso de inclusión de un nuevo antimicrobiano

Razones para introducir (o sustituir) un antibiótico

- Diferencias en la eficacia
- Diferencias en las indicaciones aprobadas
- Diferencias en la seguridad
- Diferencias en la posología y administración
- Diferencias en los costes
- Diferencias en poblaciones especiales
- Diferencias en la actividad microbiológica
- Razones "estratégicas"

Eficacia

- Doripenem se ha comparado con
 - En neumonía nosocomial
 - Piperacilina-tazobactam
 - Imipenem
 - En infección intraabdominal
 - Meropenem
 - En infección urinaria complicada
 - Levofloxacino

No diferencias

Indicaciones aprobadas

- Imipenem
 - "todas" (no meningitis)
- Meropenem
 - "todas", incluida neutropenia
- Ertapenem
 - Intraabdominal, ginecológica, piel y partes blandas, neumonía comunitaria, profilaxis colo-rectal (no urinaria!)
- Doripenem
 - Neumonía nosocomial, intraabdominal, inf. urinaria

Seguridad de Doripenem

- Fármaco seguro
- Perfil similar a Meropenem
- Experienciaprolongada en Japón
 - Con dosis inferiores...
- Interacción con ácido valpróico

Table VI. Tolerability overview in patients who received IV doripenem or meropenem for complicated intra-abdominal infection (intent-to-treat population). Values are no. (%) of patients.

Parameter	Doripenem (n = 235)	Meropenem (n = 236)
Patients with AFs	195 (83.0)	184 (78.0)
Patients with study drug-related AEs	76 (32.3)	63 (26.7)
Patients with SAEs	31 (13.2)	33 (14.0)
Patients with study drug-related SAEs	0	0
Discontinuations due to AEs	12 (5.1)	5 (2.1)
Discontinuations due to study drug related AEs	5 (2.1)	3 (1.3)
Deaths	5 (2.1)	7 (3.0)

AEs - adverse events; SAEs - serious AEs.

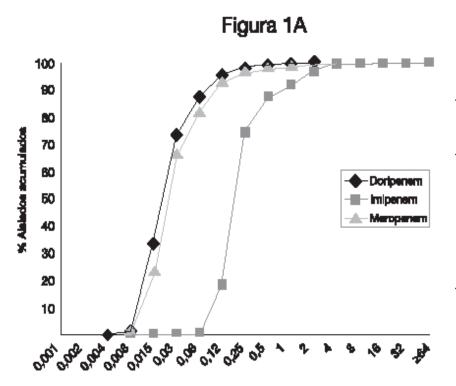
Posología y administración

	IMI	ERTA	MERO	DORI
Vía	Im/Iv	lm(?)/lv	(lm?)/lv	lv
Intervalo	6-8 h	24 h	8 h	8 h
Infusión	40-60 min	30 min.	5-30 min*	1-4 h
Estabilidad (ambiente)	4 h	6 h	8 h	12 h
Ventaja oca Ve				
Ventaja teórica en la sepsis				!

Ventaja teórica PK/PD

* Posibilidad de infusión prolongada

Costes

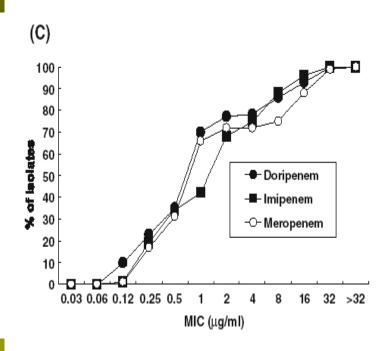

□ Consideraciones locales...

	IMI 2 gr	IMI 3 gr	ERTA 1gr	MERO 3 gr	DORI 1,5 gr
1 día	30,2	45,3	45,0	58,08	64,8
1 semana	211,4	317,1	315	406,56	453,6

Actividad microbiológica (panorámica)

	ERTA	IMI	MERO	DORI
Enterococo	-	++	+/-	+/-
S.aureus	+	++	++	++
MRSA	_	-	_	_
Enterobacterias (BLEE+)	++	++	+++	+++
P.aeruginosa	_	+	++	++/+++
Acinetobacter	-	+/-	+/-	+/-
Anaerobios	++	+++	+++	+++

Actividad frente a enterobacterias


Cepas productoras de carbapenemasas

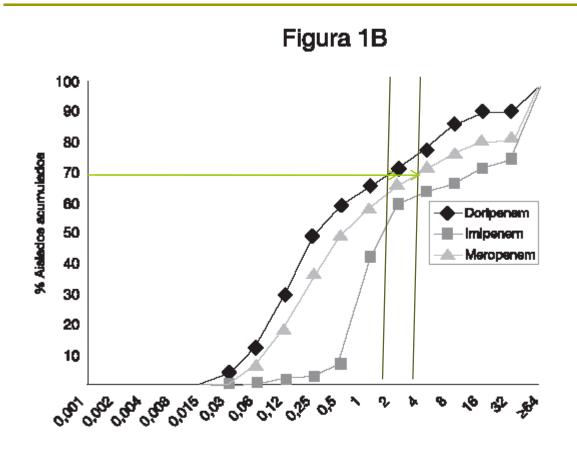
Species	Phenotype			
Species	Thenotype	DOR	MEM	IMP
Klebsiella spp.	KPC-3	16	64	64
Klebsiella spp.	KPC-3	8	32	16
Klebsiella spp.	KPC-3	32	64	64
Klebsiella spp.	KPC-3	64	>64	>64
S. marcescens	SME-1	32	32	>64
K. pneumoniae	IMP-1 porin	64	>64	>64
K. pneumoniae	IMP-1 porin ⁺	16	16	16

Mushtaq, AACh 2004

Gimeno. Rev Esp Quimioter 2010

Acinetobacter baumannii

SSJean. Eur J Clin Microb Infect Dis 2010


Table 1Activity of doripenem, imipenem and meropenem against *Acinetobacter baumannii* clinical isolates (*n* **–** 87).

Clinical isolates/	% isolates with MIC >8 μg/mL	MIC (μg/mL)		
antimicrobial agent		MIC ₅₀	MIC ₉₀	Range
All strains (n = 87)	$\overline{}$			
Doripenem	54	8	256	0.06-256
Imipenem	57.5	16	128	0.1-128
Meropenem	64.4	16	64	1-64
OXA-58-positive (n = 1	2)			
Doripenem	→ 33	4	8	2-128
Imipenem	100	16	64	16-64
Meropenem	100	16	64	8-64
OXA-24-positive (n = 1	9)			
Doripenem	100	256	256	128-256
Imipenem	100	128	128	16-128
Meropenem	100	64	64	8-64

MIC, minimum inhibitory concentration; MIC_{50/90}, MIC for 50% and 90% of the isolates, respectively.

S.Martí. IJAA 2009

Pseudomonas aeruginosa

La actividad intrínseca de Doripenem es algo mayor (una dilución) que la de meropenem

El porcentaje de cepas sensibles a MP y DP es idéntico (67%)

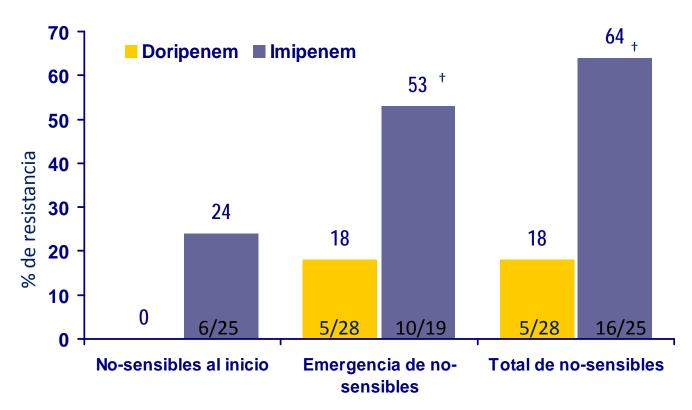
Gimeno, Rev Esp Quimioter, 2010

Los mecanismos de resistencia (OprD, hiperprod. de AmpC, bombas de explusión, metalo-betalactamasas) son compartidos

were seen for clinical isolates with VIM and IMP metallo-β-lactamases. Resistant mutants seemed to be harder to select with doripenem than with other carbapenems (or noncarbapenems), and the fold increases in the MICs were smaller for the resistant mutants. Single-step doripenem mutants were mostly resistant only to

Doripenem versus *Pseudomonas aeruginosa* In Vitro: Activity against Characterized Isolates, Mutants, and Transconjugants and Resistance Selection Potential

Shazad Mushtaq,1 Yigong Ge,2 and David M. Livermore1*


Antibiotic Resistance Monitoring & Reference Laboratory, Specialist & Reference Microbiology Division, Health Protection Agency, Colindale, London, NW9 5HT, United Kingdom, and Peninsula Pharmaceuticals Inc., Alameda, California 94502²

Received 30 October 2003/Returned for modification 28 January 2004/Accepted 14 April 2004

Doripenem is a broad-spectrum parenteral carbapenem under clinical development in Japan and North America. Its activities against (i) Pseudomonas aeruginosa isolates with graded levels of intrinsic efflux-type resistance, (ii) mutants with various combinations of AmpC and OprD expression, (iii) PU21 transconjugants with class A and D β-lactamases, and (iv) P. aeruginosa isolates with metallo-β-lactamases were tested by the agar dilution method of the National Committee for Clinical Laboratory Standards. Selection of resistant P. aeruginosa mutants was investigated in single- and multistep procedures. Doripenem MICs for isolates without acquired resistance mostly were 0.12 to 0.5 µg/ml, whereas meropenem MICs were 0.25 to 0.5 µg/ml and imipenem MICs were 1 to 2 µg/ml. The MICs of doripenem, meropenem, ertapenem, and noncarbapenems for isolates with increased efflux-type resistance were elevated, whereas the MICs of imipenem were less affected. The MICs of doripenem were increased by the loss of OprD but not by derepression of AmpC; nevertheless, and as with other carbapenems, the impermeability-determined resistance caused by the loss of OprD corequired AmpC activity and was lost in OprD- mutants also lacking AmpC. The TEM, PSE, PER, and OXA enzymes did not significantly protect P. aeruginosa PU21 against the activity of doripenem, whereas MICs of ≥16 µg/ml were seen for clinical isolates with VIM and IMP metallo-β-lactamases. Resistant mutants seemed to be harder to select with doripenem than with other carbapenems (or noncarbapenems), and the fold increases in the MICs were smaller for the resistant mutants. Single-step doripenem mutants were mostly resistant only to carbapenems and had lost OprD; multistep mutants had broader resistance, implying the presence of additional mechanisms, putatively including up-regulated efflux. Most mutants selected with aminoglycosides and quinolones had little or no cross-resistance to carbapenems, including doripenem.

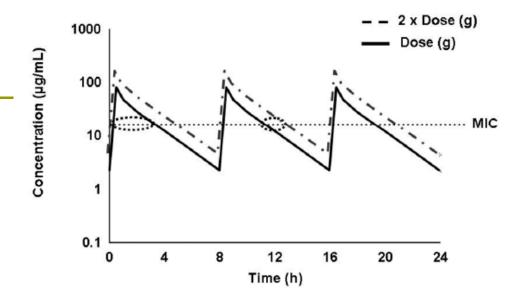
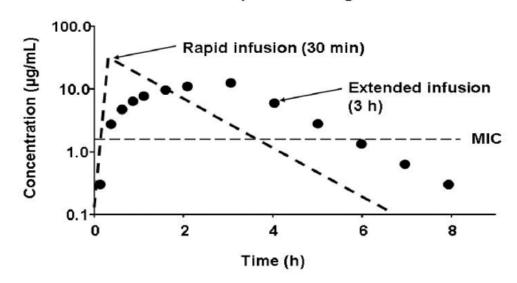
Emergencia in vivo de aislados no-sensibles* de P. aeruginosa

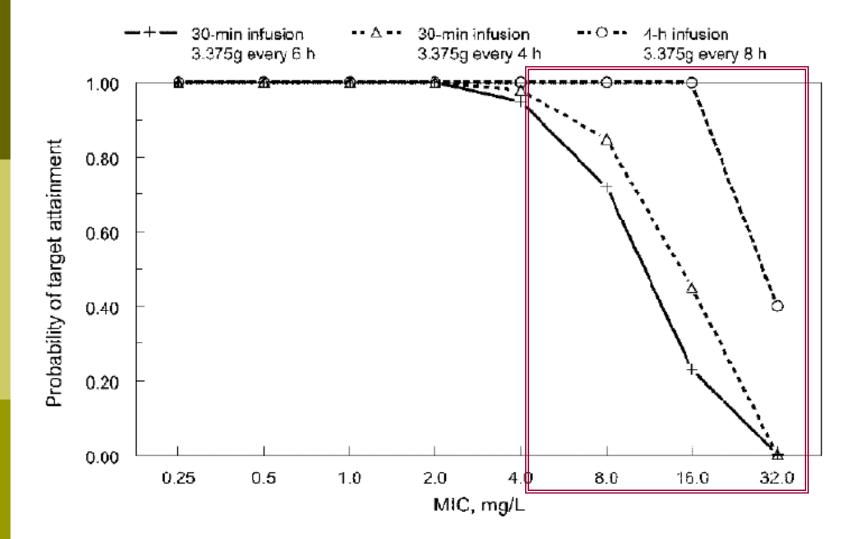
¿Qué pasaría en una comparación doripenem-meropenem?

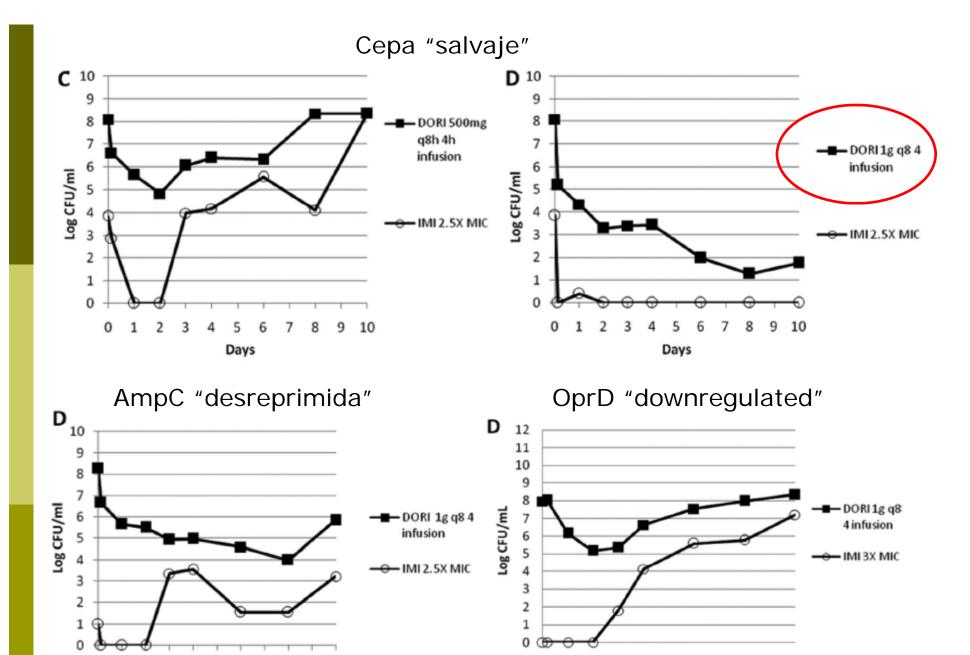
No sensibles (doripenem e imipenem) = CMI \geq 8 mg/L Total no-sensibles (NS) = NS al inicio + emergencia de NS $^{\dagger}P < 0.05$, mMITT population.

mMITT = población con intención de tratamiento modificado microbiológicamente

Figure 2


Figure 3


Meropenem 500 mg

Incrementar la dosis es menos eficiente desde el punto de vista farmacodinámico que realizar una infusión más lenta, en el caso de los beta-lactámicos

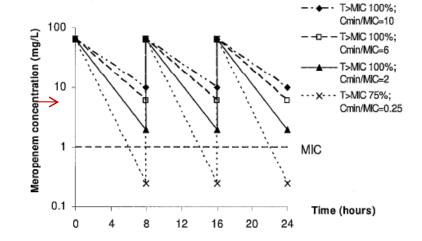
DP. Nicolau. Crit Care

A.Louie. A A Ch 2101

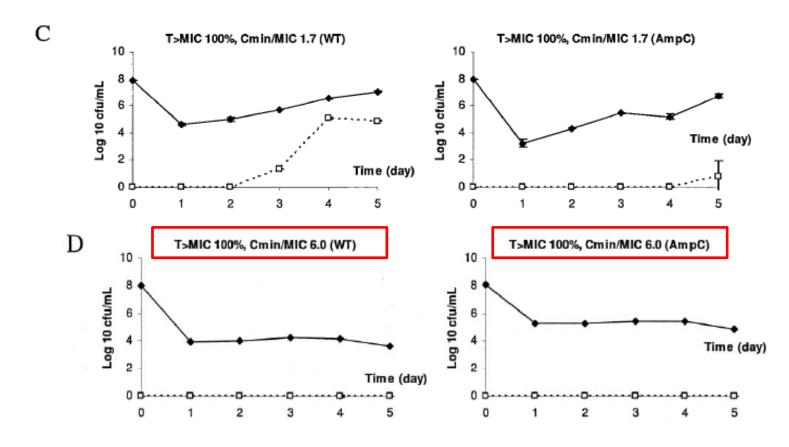
9 10

3

Days


3

6


Days

9 10

Optimización de Meropenem para suprimir la aparición de resistencias en *P.aeruginosa*

Tam AACh 2005

Síntesis

- Es conveniente disponer de ertapenem, cuyo perfil microbiológico es "inferior" para tratar de infecciones producidas por enterobacterias resistentes a cefalosporinas
 - Posología cómoda
 - Menor presión selectiva
- Es razonable (pero no imprescindible) mantener imipenem
 - Infecciones polimicrobianas con implicación de E. faecalis
 - Coste inferior
 - Debería evitarse en NAV

Síntesis

- Es necesario disponer de meropenem o doripenem
 - Evidente mejor perfil frente a *P.aeruginosa* que imipenem
 - Mejor perfil de seguridad que imipenem
- Disponer de ambos resulta redundante y puede condicionar incremento del consumo debido a la competencia comercial

Síntesis

A favor

- Posibles ventajas en la selección de resistencias en *P.aeruginosa*
- <u>Tal vez</u> permita tratar cepas concretas de *A.baumannii* (oxa 58) imipenem-R
- Quizá permitiría rescatar algunas infecciones por P.aeruginosa mediante la optimización farmacodinámica

En contra

- No dispone de registro en importantes indicaciones
- Menos datos de seguridad
- También puede emplearse la optimización PK/PD con Meropenem
- Doripenem no vence mecanismos específicos de resistencia a carbapenémicos
- Coste algo superior